Metamath Proof Explorer


Theorem cdlemk31

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 17-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
Assertion cdlemk31 K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W b Y G P = P ˙ R G ˙ S b P ˙ R G b -1

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 simp2l2 K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W b T
12 simp2r K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W G T
13 eqid S b = S b
14 eqid e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1 = e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1
15 1 2 3 4 5 6 7 8 9 10 13 14 cdlemkuu b T G T b Y G = e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1 G
16 11 12 15 syl2anc K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W b Y G = e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1 G
17 16 fveq1d K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W b Y G P = e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1 G P
18 simp1l K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W K HL W H
19 simp1r K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W R F = R N
20 simp2l K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W F T b T N T
21 simp31 K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W R b R F R b R G
22 simp321 K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W F I B
23 simp323 K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W G I B
24 simp322 K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W b I B
25 22 23 24 3jca K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W F I B G I B b I B
26 simp33 K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W P A ¬ P ˙ W
27 1 2 3 4 5 6 7 8 9 13 14 cdlemkuv2 K HL W H R F = R N G T F T b T N T R b R F R b R G F I B G I B b I B P A ¬ P ˙ W e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1 G P = P ˙ R G ˙ S b P ˙ R G b -1
28 18 19 12 20 21 25 26 27 syl313anc K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1 G P = P ˙ R G ˙ S b P ˙ R G b -1
29 17 28 eqtrd K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W b Y G P = P ˙ R G ˙ S b P ˙ R G b -1