Metamath Proof Explorer


Theorem cdlemk34

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 18-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
cdlemk3.x X = ι z T | b T b I B R b R F R b R G z = b Y G
Assertion cdlemk34 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X = ι z T | b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 cdlemk3.x X = ι z T | b T b I B R b R F R b R G z = b Y G
12 fveq1 z = b Y G z P = b Y G P
13 simpll1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P K HL W H
14 simplr1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P z T
15 simpl1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G K HL W H
16 simpl3r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G R F = R N
17 simp22l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G T
18 17 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G G T
19 15 16 18 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G K HL W H R F = R N G T
20 19 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P K HL W H R F = R N G T
21 simp21l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N F T
22 21 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G F T
23 simpr2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G b T
24 simpl23 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G N T
25 22 23 24 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G F T b T N T
26 25 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P F T b T N T
27 simpr32 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G R b R F
28 simpr33 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G R b R G
29 27 28 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G R b R F R b R G
30 29 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P R b R F R b R G
31 simp21r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N F I B
32 31 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G F I B
33 simp22r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G I B
34 33 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G G I B
35 simpr31 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G b I B
36 32 34 35 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G F I B G I B b I B
37 36 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P F I B G I B b I B
38 simpl3l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G P A ¬ P ˙ W
39 38 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P P A ¬ P ˙ W
40 1 2 3 4 5 6 7 8 9 10 cdlemkuel-3 K HL W H R F = R N G T F T b T N T R b R F R b R G F I B G I B b I B P A ¬ P ˙ W b Y G T
41 20 26 30 37 39 40 syl113anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P b Y G T
42 simpr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P z P = b Y G P
43 2 5 6 7 cdlemd K HL W H z T b Y G T P A ¬ P ˙ W z P = b Y G P z = b Y G
44 13 14 41 39 42 43 syl311anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P z = b Y G
45 44 ex K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P z = b Y G
46 12 45 impbid2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G z P = b Y G P
47 simp1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N K HL W H
48 simp3r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R F = R N
49 47 48 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N K HL W H R F = R N
50 49 adantr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G K HL W H R F = R N
51 32 35 34 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G F I B b I B G I B
52 1 2 3 4 5 6 7 8 9 10 cdlemk32 K HL W H R F = R N F T b T N T G T R b R F R b R G F I B b I B G I B P A ¬ P ˙ W b Y G P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
53 50 25 18 29 51 38 52 syl123anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G b Y G P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
54 53 eqeq2d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z P = b Y G P z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
55 46 54 bitrd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
56 55 3exp2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
57 56 imp31 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
58 57 pm5.74d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
59 58 ralbidva K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
60 59 riotabidva K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ι z T | b T b I B R b R F R b R G z = b Y G = ι z T | b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
61 11 60 eqtrid K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X = ι z T | b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1