Metamath Proof Explorer


Theorem cdlemk43N

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 31-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk5.u U=gTifF=NgX
Assertion cdlemk43N KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGUGP=G/gY

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 cdlemk5.u U=gTifF=NgX
13 simp213 KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGFN
14 simp22l KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGGT
15 11 12 cdlemk40f FNGTUG=G/gX
16 13 14 15 syl2anc KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGUG=G/gX
17 16 fveq1d KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGUGP=G/gXP
18 simp1l KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGKHLWH
19 simp211 KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGFT
20 simp212 KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGNT
21 simp1r KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGRF=RN
22 1 6 7 8 trlnid KHLWHFTNTFNRF=RNFIB
23 18 19 20 13 21 22 syl122anc KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGFIB
24 19 23 jca KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGFTFIB
25 simp22 KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGGTGIB
26 simp23 KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGPA¬P˙W
27 simp3 KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGbTbIBRbRFRbRG
28 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gXP=G/gY
29 18 24 25 20 26 21 27 28 syl331anc KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGG/gXP=G/gY
30 17 29 eqtrd KHLWHRF=RNFTNTFNGTGIBPA¬P˙WbTbIBRbRFRbRGUGP=G/gY