Metamath Proof Explorer


Theorem cdlemksv

Description: Part of proof of Lemma K of Crawley p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B=BaseK
cdlemk.l ˙=K
cdlemk.j ˙=joinK
cdlemk.a A=AtomsK
cdlemk.h H=LHypK
cdlemk.t T=LTrnKW
cdlemk.r R=trLKW
cdlemk.m ˙=meetK
cdlemk.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
Assertion cdlemksv GTSG=ιiT|iP=P˙RG˙NP˙RGF-1

Proof

Step Hyp Ref Expression
1 cdlemk.b B=BaseK
2 cdlemk.l ˙=K
3 cdlemk.j ˙=joinK
4 cdlemk.a A=AtomsK
5 cdlemk.h H=LHypK
6 cdlemk.t T=LTrnKW
7 cdlemk.r R=trLKW
8 cdlemk.m ˙=meetK
9 cdlemk.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 fveq2 f=GRf=RG
11 10 oveq2d f=GP˙Rf=P˙RG
12 coeq1 f=GfF-1=GF-1
13 12 fveq2d f=GRfF-1=RGF-1
14 13 oveq2d f=GNP˙RfF-1=NP˙RGF-1
15 11 14 oveq12d f=GP˙Rf˙NP˙RfF-1=P˙RG˙NP˙RGF-1
16 15 eqeq2d f=GiP=P˙Rf˙NP˙RfF-1iP=P˙RG˙NP˙RGF-1
17 16 riotabidv f=GιiT|iP=P˙Rf˙NP˙RfF-1=ιiT|iP=P˙RG˙NP˙RGF-1
18 riotaex ιiT|iP=P˙RG˙NP˙RGF-1V
19 17 9 18 fvmpt GTSG=ιiT|iP=P˙RG˙NP˙RGF-1