Metamath Proof Explorer


Theorem cdlemkyu

Description: Convert between function and explicit forms. C represents Z in cdlemkuu . TODO: Clean all this up. (Contributed by NM, 21-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5b.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk5b.u1 V=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
cdlemk5.o2 Q=Sb
cdlemk5.u2 C=eTιjT|jP=P˙Re˙QP˙Reb-1
Assertion cdlemkyu KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gY=CGP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5b.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
12 cdlemk5b.u1 V=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
13 cdlemk5.o2 Q=Sb
14 cdlemk5.u2 C=eTιjT|jP=P˙Re˙QP˙Reb-1
15 1 2 3 4 5 6 7 8 9 10 11 12 cdlemky KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gY=bVGP
16 simp3l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbT
17 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGGT
18 1 2 3 4 5 6 7 8 11 12 13 14 cdlemkuu bTGTbVG=CG
19 16 17 18 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbVG=CG
20 19 fveq1d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbVGP=CGP
21 15 20 eqtrd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gY=CGP