Metamath Proof Explorer


Theorem ceilhalfelfzo1

Description: A positive integer less than (the ceiling of) half of another integer is in the half-open range of positive integers up to the other integer. (Contributed by AV, 7-Sep-2025)

Ref Expression
Hypothesis ceilhalfelfzo1.j J = 1 ..^ N 2
Assertion ceilhalfelfzo1 N K J K 1 ..^ N

Proof

Step Hyp Ref Expression
1 ceilhalfelfzo1.j J = 1 ..^ N 2
2 1 eleq2i K J K 1 ..^ N 2
3 nnre N N
4 3 rehalfcld N N 2
5 4 ceilcld N N 2
6 nnz N N
7 nnnn0 N N 0
8 2nn 2
9 nn0ledivnn N 0 2 N 2 N
10 7 8 9 sylancl N N 2 N
11 ceille N 2 N N 2 N N 2 N
12 4 6 10 11 syl3anc N N 2 N
13 eluz2 N N 2 N 2 N N 2 N
14 5 6 12 13 syl3anbrc N N N 2
15 fzoss2 N N 2 1 ..^ N 2 1 ..^ N
16 14 15 syl N 1 ..^ N 2 1 ..^ N
17 16 sseld N K 1 ..^ N 2 K 1 ..^ N
18 2 17 biimtrid N K J K 1 ..^ N