Metamath Proof Explorer


Theorem ceilid

Description: An integer is its own ceiling. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion ceilid AA=A

Proof

Step Hyp Ref Expression
1 zre AA
2 ceilval AA=A
3 1 2 syl AA=A
4 znegcl AA
5 flid AA=A
6 4 5 syl AA=A
7 6 negeqd AA=A
8 zcn AA
9 8 negnegd AA=A
10 3 7 9 3eqtrd AA=A