Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The floor and ceiling functions
ceilid
Next ⟩
ceilidz
Metamath Proof Explorer
Ascii
Unicode
Theorem
ceilid
Description:
An integer is its own ceiling.
(Contributed by
AV
, 30-Nov-2018)
Ref
Expression
Assertion
ceilid
⊢
A
∈
ℤ
→
A
=
A
Proof
Step
Hyp
Ref
Expression
1
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
2
ceilval
⊢
A
∈
ℝ
→
A
=
−
−
A
3
1
2
syl
⊢
A
∈
ℤ
→
A
=
−
−
A
4
znegcl
⊢
A
∈
ℤ
→
−
A
∈
ℤ
5
flid
⊢
−
A
∈
ℤ
→
−
A
=
−
A
6
4
5
syl
⊢
A
∈
ℤ
→
−
A
=
−
A
7
6
negeqd
⊢
A
∈
ℤ
→
−
−
A
=
−
−
A
8
zcn
⊢
A
∈
ℤ
→
A
∈
ℂ
9
8
negnegd
⊢
A
∈
ℤ
→
−
−
A
=
A
10
3
7
9
3eqtrd
⊢
A
∈
ℤ
→
A
=
A