Metamath Proof Explorer


Theorem ceilval2

Description: The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018)

Ref Expression
Assertion ceilval2 AA=ιy|Ayy<A+1

Proof

Step Hyp Ref Expression
1 breq1 x=AxyAy
2 oveq1 x=Ax+1=A+1
3 2 breq2d x=Ay<x+1y<A+1
4 1 3 anbi12d x=Axyy<x+1Ayy<A+1
5 4 riotabidv x=Aιy|xyy<x+1=ιy|Ayy<A+1
6 dfceil2 .=xιy|xyy<x+1
7 riotaex ιy|Ayy<A+1V
8 5 6 7 fvmpt AA=ιy|Ayy<A+1