Metamath Proof Explorer


Theorem ceilval2

Description: The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018)

Ref Expression
Assertion ceilval2 A A = ι y | A y y < A + 1

Proof

Step Hyp Ref Expression
1 breq1 x = A x y A y
2 oveq1 x = A x + 1 = A + 1
3 2 breq2d x = A y < x + 1 y < A + 1
4 1 3 anbi12d x = A x y y < x + 1 A y y < A + 1
5 4 riotabidv x = A ι y | x y y < x + 1 = ι y | A y y < A + 1
6 dfceil2 . = x ι y | x y y < x + 1
7 riotaex ι y | A y y < A + 1 V
8 5 6 7 fvmpt A A = ι y | A y y < A + 1