Description: If there is a cofinal map from A to B , then they have the same cofinality. This was used as Definition 11.1 of TakeutiZaring p. 100, who defines an equivalence relation cof ( A , B ) and defines our cf ( B ) as the minimum B such that cof ( A , B ) . (Contributed by Mario Carneiro, 20-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | cfcof | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfcoflem | |
|
2 | 1 | imp | |
3 | cff1 | |
|
4 | f1f | |
|
5 | 4 | anim1i | |
6 | 5 | eximi | |
7 | 3 6 | syl | |
8 | eqid | |
|
9 | 8 | coftr | |
10 | 7 9 | syl5com | |
11 | eloni | |
|
12 | cfon | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 13 14 15 | cofsmo | |
17 | 11 12 16 | sylancl | |
18 | 12 | onsuci | |
19 | 18 | oneli | |
20 | cfflb | |
|
21 | 19 20 | sylan2 | |
22 | 3simpb | |
|
23 | 22 | eximi | |
24 | 21 23 | impel | |
25 | onsssuc | |
|
26 | 19 12 25 | sylancl | |
27 | 26 | ibir | |
28 | 27 | ad2antlr | |
29 | 24 28 | sstrd | |
30 | 29 | rexlimdva2 | |
31 | 17 30 | syld | |
32 | 10 31 | sylan9 | |
33 | 32 | imp | |
34 | 2 33 | eqssd | |
35 | 34 | ex | |