Metamath Proof Explorer


Theorem cfcof

Description: If there is a cofinal map from A to B , then they have the same cofinality. This was used as Definition 11.1 of TakeutiZaring p. 100, who defines an equivalence relation cof ( A , B ) and defines our cf ( B ) as the minimum B such that cof ( A , B ) . (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Assertion cfcof AOnBOnff:BASmofzAwBzfwcfA=cfB

Proof

Step Hyp Ref Expression
1 cfcoflem AOnBOnff:BASmofzAwBzfwcfAcfB
2 1 imp AOnBOnff:BASmofzAwBzfwcfAcfB
3 cff1 AOngg:cfA1-1AsAtcfAsgt
4 f1f g:cfA1-1Ag:cfAA
5 4 anim1i g:cfA1-1AsAtcfAsgtg:cfAAsAtcfAsgt
6 5 eximi gg:cfA1-1AsAtcfAsgtgg:cfAAsAtcfAsgt
7 3 6 syl AOngg:cfAAsAtcfAsgt
8 eqid ycfAvB|gyfv=ycfAvB|gyfv
9 8 coftr ff:BASmofzAwBzfwgg:cfAAsAtcfAsgthh:cfABrBtcfArht
10 7 9 syl5com AOnff:BASmofzAwBzfwhh:cfABrBtcfArht
11 eloni BOnOrdB
12 cfon cfAOn
13 eqid xcfA|txhthx=xcfA|txhthx
14 eqid ccfA|rhc=ccfA|rhc
15 eqid OrdIsoExcfA|txhthx=OrdIsoExcfA|txhthx
16 13 14 15 cofsmo OrdBcfAOnhh:cfABrBtcfArhtcsuccfAkk:cBSmokrBscrks
17 11 12 16 sylancl BOnhh:cfABrBtcfArhtcsuccfAkk:cBSmokrBscrks
18 12 onsuci succfAOn
19 18 oneli csuccfAcOn
20 cfflb BOncOnkk:cBrBscrkscfBc
21 19 20 sylan2 BOncsuccfAkk:cBrBscrkscfBc
22 3simpb k:cBSmokrBscrksk:cBrBscrks
23 22 eximi kk:cBSmokrBscrkskk:cBrBscrks
24 21 23 impel BOncsuccfAkk:cBSmokrBscrkscfBc
25 onsssuc cOncfAOnccfAcsuccfA
26 19 12 25 sylancl csuccfAccfAcsuccfA
27 26 ibir csuccfAccfA
28 27 ad2antlr BOncsuccfAkk:cBSmokrBscrksccfA
29 24 28 sstrd BOncsuccfAkk:cBSmokrBscrkscfBcfA
30 29 rexlimdva2 BOncsuccfAkk:cBSmokrBscrkscfBcfA
31 17 30 syld BOnhh:cfABrBtcfArhtcfBcfA
32 10 31 sylan9 AOnBOnff:BASmofzAwBzfwcfBcfA
33 32 imp AOnBOnff:BASmofzAwBzfwcfBcfA
34 2 33 eqssd AOnBOnff:BASmofzAwBzfwcfA=cfB
35 34 ex AOnBOnff:BASmofzAwBzfwcfA=cfB