Description: There is always a map from ( cfA ) to A (this is a stronger condition than the definition, which only presupposes a map from some y ~( cfA ) . (Contributed by Mario Carneiro, 28-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | cff1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfval | |
|
2 | cardon | |
|
3 | eleq1 | |
|
4 | 2 3 | mpbiri | |
5 | 4 | adantr | |
6 | 5 | exlimiv | |
7 | 6 | abssi | |
8 | cflem | |
|
9 | abn0 | |
|
10 | 8 9 | sylibr | |
11 | onint | |
|
12 | 7 10 11 | sylancr | |
13 | 1 12 | eqeltrd | |
14 | fvex | |
|
15 | eqeq1 | |
|
16 | 15 | anbi1d | |
17 | 16 | exbidv | |
18 | 14 17 | elab | |
19 | 13 18 | sylib | |
20 | simplr | |
|
21 | onss | |
|
22 | sstr | |
|
23 | 21 22 | sylan2 | |
24 | 23 | ancoms | |
25 | 24 | ad2ant2r | |
26 | vex | |
|
27 | onssnum | |
|
28 | 26 27 | mpan | |
29 | cardid2 | |
|
30 | 28 29 | syl | |
31 | 30 | adantl | |
32 | breq1 | |
|
33 | 32 | adantr | |
34 | 31 33 | mpbird | |
35 | bren | |
|
36 | 34 35 | sylib | |
37 | 20 25 36 | syl2anc | |
38 | f1of1 | |
|
39 | f1ss | |
|
40 | 39 | ancoms | |
41 | 38 40 | sylan2 | |
42 | 41 | adantlr | |
43 | 42 | 3adant1 | |
44 | f1ofo | |
|
45 | foelrn | |
|
46 | sseq2 | |
|
47 | 46 | biimpcd | |
48 | 47 | reximdv | |
49 | 45 48 | syl5com | |
50 | 49 | rexlimdva | |
51 | 50 | ralimdv | |
52 | 44 51 | syl | |
53 | 52 | impcom | |
54 | 53 | adantll | |
55 | 54 | 3adant1 | |
56 | 43 55 | jca | |
57 | 56 | 3expia | |
58 | 57 | eximdv | |
59 | 37 58 | mpd | |
60 | 59 | expl | |
61 | 60 | exlimdv | |
62 | 19 61 | mpd | |