Metamath Proof Explorer


Theorem cfilfval

Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cfilfval D∞MetXCauFilD=fFilX|x+yfDy×y0x

Proof

Step Hyp Ref Expression
1 fvssunirn ∞MetXran∞Met
2 1 sseli D∞MetXDran∞Met
3 dmeq d=Ddomd=domD
4 3 dmeqd d=Ddomdomd=domdomD
5 4 fveq2d d=DFildomdomd=FildomdomD
6 imaeq1 d=Ddy×y=Dy×y
7 6 sseq1d d=Ddy×y0xDy×y0x
8 7 rexbidv d=Dyfdy×y0xyfDy×y0x
9 8 ralbidv d=Dx+yfdy×y0xx+yfDy×y0x
10 5 9 rabeqbidv d=DfFildomdomd|x+yfdy×y0x=fFildomdomD|x+yfDy×y0x
11 df-cfil CauFil=dran∞MetfFildomdomd|x+yfdy×y0x
12 fvex FildomdomDV
13 12 rabex fFildomdomD|x+yfDy×y0xV
14 10 11 13 fvmpt Dran∞MetCauFilD=fFildomdomD|x+yfDy×y0x
15 2 14 syl D∞MetXCauFilD=fFildomdomD|x+yfDy×y0x
16 xmetdmdm D∞MetXX=domdomD
17 16 fveq2d D∞MetXFilX=FildomdomD
18 17 rabeqdv D∞MetXfFilX|x+yfDy×y0x=fFildomdomD|x+yfDy×y0x
19 15 18 eqtr4d D∞MetXCauFilD=fFilX|x+yfDy×y0x