Metamath Proof Explorer


Theorem cfili

Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cfili FCauFilDR+xFyxzxyDz<R

Proof

Step Hyp Ref Expression
1 df-cfil CauFil=dran∞MetfFildomdomd|x+yfdy×y0x
2 1 mptrcl FCauFilDDran∞Met
3 xmetunirn Dran∞MetD∞MetdomdomD
4 2 3 sylib FCauFilDD∞MetdomdomD
5 iscfil2 D∞MetdomdomDFCauFilDFFildomdomDr+xFyxzxyDz<r
6 4 5 syl FCauFilDFCauFilDFFildomdomDr+xFyxzxyDz<r
7 6 ibi FCauFilDFFildomdomDr+xFyxzxyDz<r
8 7 simprd FCauFilDr+xFyxzxyDz<r
9 breq2 r=RyDz<ryDz<R
10 9 2ralbidv r=RyxzxyDz<ryxzxyDz<R
11 10 rexbidv r=RxFyxzxyDz<rxFyxzxyDz<R
12 11 rspccva r+xFyxzxyDz<rR+xFyxzxyDz<R
13 8 12 sylan FCauFilDR+xFyxzxyDz<R