Metamath Proof Explorer


Theorem cgr3permute3

Description: Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion cgr3permute3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBCACgr3EFD

Proof

Step Hyp Ref Expression
1 id NN
2 3simpa A𝔼NB𝔼NC𝔼NA𝔼NB𝔼N
3 3simpa D𝔼NE𝔼NF𝔼ND𝔼NE𝔼N
4 cgrcomlr NA𝔼NB𝔼ND𝔼NE𝔼NABCgrDEBACgrED
5 1 2 3 4 syl3an NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrDEBACgrED
6 3simpb A𝔼NB𝔼NC𝔼NA𝔼NC𝔼N
7 3simpb D𝔼NE𝔼NF𝔼ND𝔼NF𝔼N
8 cgrcomlr NA𝔼NC𝔼ND𝔼NF𝔼NACCgrDFCACgrFD
9 1 6 7 8 syl3an NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NACCgrDFCACgrFD
10 5 9 3anbi12d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrDEACCgrDFBCCgrEFBACgrEDCACgrFDBCCgrEF
11 3anrot BCCgrEFBACgrEDCACgrFDBACgrEDCACgrFDBCCgrEF
12 10 11 bitr4di NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrDEACCgrDFBCCgrEFBCCgrEFBACgrEDCACgrFD
13 brcgr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABCgrDEACCgrDFBCCgrEF
14 biid NN
15 3anrot A𝔼NB𝔼NC𝔼NB𝔼NC𝔼NA𝔼N
16 3anrot D𝔼NE𝔼NF𝔼NE𝔼NF𝔼ND𝔼N
17 brcgr3 NB𝔼NC𝔼NA𝔼NE𝔼NF𝔼ND𝔼NBCACgr3EFDBCCgrEFBACgrEDCACgrFD
18 14 15 16 17 syl3anb NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBCACgr3EFDBCCgrEFBACgrEDCACgrFD
19 12 13 18 3bitr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBCACgr3EFD