Metamath Proof Explorer


Theorem cgrtriv

Description: Degenerate segments are congruent. Theorem 2.8 of Schwabhauser p. 28. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrtriv N A 𝔼 N B 𝔼 N A A Cgr B B

Proof

Step Hyp Ref Expression
1 simp1 N A 𝔼 N B 𝔼 N N
2 simp2 N A 𝔼 N B 𝔼 N A 𝔼 N
3 simp3 N A 𝔼 N B 𝔼 N B 𝔼 N
4 axsegcon N A 𝔼 N A 𝔼 N B 𝔼 N B 𝔼 N x 𝔼 N A Btwn A x A x Cgr B B
5 1 2 2 3 3 4 syl122anc N A 𝔼 N B 𝔼 N x 𝔼 N A Btwn A x A x Cgr B B
6 simpl1 N A 𝔼 N B 𝔼 N x 𝔼 N N
7 simpl2 N A 𝔼 N B 𝔼 N x 𝔼 N A 𝔼 N
8 simpr N A 𝔼 N B 𝔼 N x 𝔼 N x 𝔼 N
9 simpl3 N A 𝔼 N B 𝔼 N x 𝔼 N B 𝔼 N
10 axcgrid N A 𝔼 N x 𝔼 N B 𝔼 N A x Cgr B B A = x
11 6 7 8 9 10 syl13anc N A 𝔼 N B 𝔼 N x 𝔼 N A x Cgr B B A = x
12 opeq2 A = x A A = A x
13 12 breq1d A = x A A Cgr B B A x Cgr B B
14 13 biimprd A = x A x Cgr B B A A Cgr B B
15 11 14 syli N A 𝔼 N B 𝔼 N x 𝔼 N A x Cgr B B A A Cgr B B
16 15 adantld N A 𝔼 N B 𝔼 N x 𝔼 N A Btwn A x A x Cgr B B A A Cgr B B
17 16 rexlimdva N A 𝔼 N B 𝔼 N x 𝔼 N A Btwn A x A x Cgr B B A A Cgr B B
18 5 17 mpd N A 𝔼 N B 𝔼 N A A Cgr B B