Metamath Proof Explorer


Theorem chfnrn

Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999)

Ref Expression
Assertion chfnrn FFnAxAFxxranFA

Proof

Step Hyp Ref Expression
1 fvelrnb FFnAyranFxAFx=y
2 1 biimpd FFnAyranFxAFx=y
3 eleq1 Fx=yFxxyx
4 3 biimpcd FxxFx=yyx
5 4 ralimi xAFxxxAFx=yyx
6 rexim xAFx=yyxxAFx=yxAyx
7 5 6 syl xAFxxxAFx=yxAyx
8 2 7 sylan9 FFnAxAFxxyranFxAyx
9 eluni2 yAxAyx
10 8 9 imbitrrdi FFnAxAFxxyranFyA
11 10 ssrdv FFnAxAFxxranFA