Metamath Proof Explorer


Theorem chrelati

Description: The Hilbert lattice is relatively atomic. Remark 2 of Kalmbach p. 149. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 AC
chpssat.2 BC
Assertion chrelati ABxHAtomsAAxAxB

Proof

Step Hyp Ref Expression
1 chpssat.1 AC
2 chpssat.2 BC
3 1 2 chpssati ABxHAtomsxB¬xA
4 ancom xB¬xA¬xAxB
5 pssss ABAB
6 atelch xHAtomsxC
7 chnle ACxC¬xAAAx
8 1 7 mpan xC¬xAAAx
9 8 adantl ABxC¬xAAAx
10 ibar ABxBABxB
11 chlub ACxCBCABxBAxB
12 1 2 11 mp3an13 xCABxBAxB
13 10 12 sylan9bb ABxCxBAxB
14 9 13 anbi12d ABxC¬xAxBAAxAxB
15 5 6 14 syl2an ABxHAtoms¬xAxBAAxAxB
16 4 15 bitrid ABxHAtomsxB¬xAAAxAxB
17 16 rexbidva ABxHAtomsxB¬xAxHAtomsAAxAxB
18 3 17 mpbid ABxHAtomsAAxAxB