Metamath Proof Explorer


Theorem cht1

Description: The Chebyshev function at 1 . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion cht1 θ1=0

Proof

Step Hyp Ref Expression
1 1re 1
2 chtval 1θ1=p01logp
3 1 2 ax-mp θ1=p01logp
4 ppisval 101=21
5 1 4 ax-mp 01=21
6 1z 1
7 flid 11=1
8 6 7 ax-mp 1=1
9 8 oveq2i 21=21
10 1lt2 1<2
11 2z 2
12 fzn 211<221=
13 11 6 12 mp2an 1<221=
14 10 13 mpbi 21=
15 9 14 eqtri 21=
16 15 ineq1i 21=
17 0in =
18 5 16 17 3eqtri 01=
19 18 sumeq1i p01logp=plogp
20 sum0 plogp=0
21 3 19 20 3eqtri θ1=0