Description: The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | circtopn.i | |
|
circtopn.j | |
||
circtopn.f | |
||
circtopn.c | |
||
Assertion | circtopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | circtopn.i | |
|
2 | circtopn.j | |
|
3 | circtopn.f | |
|
4 | circtopn.c | |
|
5 | pwuni | |
|
6 | retop | |
|
7 | 2 6 | eqeltri | |
8 | 3 4 | efifo | |
9 | uniretop | |
|
10 | 2 | unieqi | |
11 | 9 10 | eqtr4i | |
12 | 11 | qtopuni | |
13 | 7 8 12 | mp2an | |
14 | 13 | pweqi | |
15 | 5 14 | sseqtrri | |
16 | eqidd | |
|
17 | rebase | |
|
18 | 17 | a1i | |
19 | 8 | a1i | |
20 | recms | |
|
21 | 20 | a1i | |
22 | 16 18 19 21 | imasbas | |
23 | 22 | mptru | |
24 | retopn | |
|
25 | 2 24 | eqtri | |
26 | eqid | |
|
27 | 16 18 19 21 25 26 | imastset | |
28 | 27 | mptru | |
29 | 28 | eqcomi | |
30 | 23 29 | topnid | |
31 | 15 30 | ax-mp | |