Metamath Proof Explorer


Theorem cjadd

Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of Gleason p. 133. (Contributed by NM, 31-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion cjadd ABA+B=A+B

Proof

Step Hyp Ref Expression
1 readd ABA+B=A+B
2 imadd ABA+B=A+B
3 2 oveq2d ABiA+B=iA+B
4 ax-icn i
5 4 a1i ABi
6 imcl AA
7 6 adantr ABA
8 7 recnd ABA
9 imcl BB
10 9 adantl ABB
11 10 recnd ABB
12 5 8 11 adddid ABiA+B=iA+iB
13 3 12 eqtrd ABiA+B=iA+iB
14 1 13 oveq12d ABA+BiA+B=A+B-iA+iB
15 recl AA
16 15 adantr ABA
17 16 recnd ABA
18 recl BB
19 18 adantl ABB
20 19 recnd ABB
21 mulcl iAiA
22 4 8 21 sylancr ABiA
23 mulcl iBiB
24 4 11 23 sylancr ABiB
25 17 20 22 24 addsub4d ABA+B-iA+iB=AiA+B-iB
26 14 25 eqtrd ABA+BiA+B=AiA+B-iB
27 addcl ABA+B
28 remim A+BA+B=A+BiA+B
29 27 28 syl ABA+B=A+BiA+B
30 remim AA=AiA
31 remim BB=BiB
32 30 31 oveqan12d ABA+B=AiA+B-iB
33 26 29 32 3eqtr4d ABA+B=A+B