Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of Gleason p. 133. (Contributed by NM, 31-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cjadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readd | |
|
2 | imadd | |
|
3 | 2 | oveq2d | |
4 | ax-icn | |
|
5 | 4 | a1i | |
6 | imcl | |
|
7 | 6 | adantr | |
8 | 7 | recnd | |
9 | imcl | |
|
10 | 9 | adantl | |
11 | 10 | recnd | |
12 | 5 8 11 | adddid | |
13 | 3 12 | eqtrd | |
14 | 1 13 | oveq12d | |
15 | recl | |
|
16 | 15 | adantr | |
17 | 16 | recnd | |
18 | recl | |
|
19 | 18 | adantl | |
20 | 19 | recnd | |
21 | mulcl | |
|
22 | 4 8 21 | sylancr | |
23 | mulcl | |
|
24 | 4 11 23 | sylancr | |
25 | 17 20 22 24 | addsub4d | |
26 | 14 25 | eqtrd | |
27 | addcl | |
|
28 | remim | |
|
29 | 27 28 | syl | |
30 | remim | |
|
31 | remim | |
|
32 | 30 31 | oveqan12d | |
33 | 26 29 32 | 3eqtr4d | |