Metamath Proof Explorer


Theorem clim0c

Description: Express the predicate F converges to 0 . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses clim0.1 Z=M
clim0.2 φM
clim0.3 φFV
clim0.4 φkZFk=B
clim0c.6 φkZB
Assertion clim0c φF0x+jZkjB<x

Proof

Step Hyp Ref Expression
1 clim0.1 Z=M
2 clim0.2 φM
3 clim0.3 φFV
4 clim0.4 φkZFk=B
5 clim0c.6 φkZB
6 0cnd φ0
7 1 2 3 4 6 5 clim2c φF0x+jZkjB0<x
8 1 uztrn2 jZkjkZ
9 5 subid1d φkZB0=B
10 9 fveq2d φkZB0=B
11 10 breq1d φkZB0<xB<x
12 8 11 sylan2 φjZkjB0<xB<x
13 12 anassrs φjZkjB0<xB<x
14 13 ralbidva φjZkjB0<xkjB<x
15 14 rexbidva φjZkjB0<xjZkjB<x
16 15 ralbidv φx+jZkjB0<xx+jZkjB<x
17 7 16 bitrd φF0x+jZkjB<x