Metamath Proof Explorer


Theorem climim

Description: Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by NM, 7-Jun-2006) (Revised by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses climcn1lem.1 Z=M
climcn1lem.2 φFA
climcn1lem.4 φGW
climcn1lem.5 φM
climcn1lem.6 φkZFk
climim.7 φkZGk=Fk
Assertion climim φGA

Proof

Step Hyp Ref Expression
1 climcn1lem.1 Z=M
2 climcn1lem.2 φFA
3 climcn1lem.4 φGW
4 climcn1lem.5 φM
5 climcn1lem.6 φkZFk
6 climim.7 φkZGk=Fk
7 imf :
8 ax-resscn
9 fss ::
10 7 8 9 mp2an :
11 imcn2 Ax+y+zzA<yzA<x
12 1 2 3 4 5 10 11 6 climcn1lem φGA