Metamath Proof Explorer


Theorem climle

Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses climadd.1 Z=M
climadd.2 φM
climadd.4 φFA
climle.5 φGB
climle.6 φkZFk
climle.7 φkZGk
climle.8 φkZFkGk
Assertion climle φAB

Proof

Step Hyp Ref Expression
1 climadd.1 Z=M
2 climadd.2 φM
3 climadd.4 φFA
4 climle.5 φGB
5 climle.6 φkZFk
6 climle.7 φkZGk
7 climle.8 φkZFkGk
8 1 fvexi ZV
9 8 mptex jZGjFjV
10 9 a1i φjZGjFjV
11 6 recnd φkZGk
12 5 recnd φkZFk
13 fveq2 j=kGj=Gk
14 fveq2 j=kFj=Fk
15 13 14 oveq12d j=kGjFj=GkFk
16 eqid jZGjFj=jZGjFj
17 ovex GkFkV
18 15 16 17 fvmpt kZjZGjFjk=GkFk
19 18 adantl φkZjZGjFjk=GkFk
20 1 2 4 10 3 11 12 19 climsub φjZGjFjBA
21 6 5 resubcld φkZGkFk
22 19 21 eqeltrd φkZjZGjFjk
23 6 5 subge0d φkZ0GkFkFkGk
24 7 23 mpbird φkZ0GkFk
25 24 19 breqtrrd φkZ0jZGjFjk
26 1 2 20 22 25 climge0 φ0BA
27 1 2 4 6 climrecl φB
28 1 2 3 5 climrecl φA
29 27 28 subge0d φ0BAAB
30 26 29 mpbid φAB