Metamath Proof Explorer


Theorem climlec2

Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
climlec2.2 φM
climlec2.3 φA
climlec2.4 φFB
climlec2.5 φkZFk
climlec2.6 φkZAFk
Assertion climlec2 φAB

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 climlec2.2 φM
3 climlec2.3 φA
4 climlec2.4 φFB
5 climlec2.5 φkZFk
6 climlec2.6 φkZAFk
7 3 recnd φA
8 0z 0
9 uzssz 0
10 zex V
11 9 10 climconst2 A0×AA
12 7 8 11 sylancl φ×AA
13 eluzelz kMk
14 13 1 eleq2s kZk
15 fvconst2g Ak×Ak=A
16 3 14 15 syl2an φkZ×Ak=A
17 3 adantr φkZA
18 16 17 eqeltrd φkZ×Ak
19 16 6 eqbrtrd φkZ×AkFk
20 1 2 12 4 18 5 19 climle φAB