Metamath Proof Explorer


Theorem climserle

Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005) (Revised by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
climserle.2 φNZ
climserle.3 φseqM+FA
climserle.4 φkZFk
climserle.5 φkZ0Fk
Assertion climserle φseqM+FNA

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 climserle.2 φNZ
3 climserle.3 φseqM+FA
4 climserle.4 φkZFk
5 climserle.5 φkZ0Fk
6 2 1 eleqtrdi φNM
7 eluzel2 NMM
8 6 7 syl φM
9 1 8 4 serfre φseqM+F:Z
10 9 ffvelcdmda φjZseqM+Fj
11 1 peano2uzs jZj+1Z
12 fveq2 k=j+1Fk=Fj+1
13 12 breq2d k=j+10Fk0Fj+1
14 13 imbi2d k=j+1φ0Fkφ0Fj+1
15 5 expcom kZφ0Fk
16 14 15 vtoclga j+1Zφ0Fj+1
17 16 impcom φj+1Z0Fj+1
18 11 17 sylan2 φjZ0Fj+1
19 12 eleq1d k=j+1FkFj+1
20 19 imbi2d k=j+1φFkφFj+1
21 4 expcom kZφFk
22 20 21 vtoclga j+1ZφFj+1
23 22 impcom φj+1ZFj+1
24 11 23 sylan2 φjZFj+1
25 10 24 addge01d φjZ0Fj+1seqM+FjseqM+Fj+Fj+1
26 18 25 mpbid φjZseqM+FjseqM+Fj+Fj+1
27 simpr φjZjZ
28 27 1 eleqtrdi φjZjM
29 seqp1 jMseqM+Fj+1=seqM+Fj+Fj+1
30 28 29 syl φjZseqM+Fj+1=seqM+Fj+Fj+1
31 26 30 breqtrrd φjZseqM+FjseqM+Fj+1
32 1 2 3 10 31 climub φseqM+FNA