Metamath Proof Explorer


Theorem climsub

Description: Limit of the difference of two converging sequences. Proposition 12-2.1(b) of Gleason p. 168. (Contributed by NM, 4-Aug-2007) (Proof shortened by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses climadd.1 Z=M
climadd.2 φM
climadd.4 φFA
climadd.6 φHX
climadd.7 φGB
climadd.8 φkZFk
climadd.9 φkZGk
climsub.h φkZHk=FkGk
Assertion climsub φHAB

Proof

Step Hyp Ref Expression
1 climadd.1 Z=M
2 climadd.2 φM
3 climadd.4 φFA
4 climadd.6 φHX
5 climadd.7 φGB
6 climadd.8 φkZFk
7 climadd.9 φkZGk
8 climsub.h φkZHk=FkGk
9 climcl FAA
10 3 9 syl φA
11 climcl GBB
12 5 11 syl φB
13 subcl uvuv
14 13 adantl φuvuv
15 simpr φx+x+
16 10 adantr φx+A
17 12 adantr φx+B
18 subcn2 x+ABy+z+uvuA<yvB<zu-v-AB<x
19 15 16 17 18 syl3anc φx+y+z+uvuA<yvB<zu-v-AB<x
20 1 2 10 12 14 3 5 4 19 6 7 8 climcn2 φHAB