Metamath Proof Explorer


Theorem climcn2

Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climcn2.1 Z=M
climcn2.2 φM
climcn2.3a φAC
climcn2.3b φBD
climcn2.4 φuCvDuFv
climcn2.5a φGA
climcn2.5b φHB
climcn2.6 φKW
climcn2.7 φx+y+z+uCvDuA<yvB<zuFvAFB<x
climcn2.8a φkZGkC
climcn2.8b φkZHkD
climcn2.9 φkZKk=GkFHk
Assertion climcn2 φKAFB

Proof

Step Hyp Ref Expression
1 climcn2.1 Z=M
2 climcn2.2 φM
3 climcn2.3a φAC
4 climcn2.3b φBD
5 climcn2.4 φuCvDuFv
6 climcn2.5a φGA
7 climcn2.5b φHB
8 climcn2.6 φKW
9 climcn2.7 φx+y+z+uCvDuA<yvB<zuFvAFB<x
10 climcn2.8a φkZGkC
11 climcn2.8b φkZHkD
12 climcn2.9 φkZKk=GkFHk
13 2 adantr φy+z+M
14 simprl φy+z+y+
15 eqidd φy+z+kZGk=Gk
16 6 adantr φy+z+GA
17 1 13 14 15 16 climi2 φy+z+jZkjGkA<y
18 simprr φy+z+z+
19 eqidd φy+z+kZHk=Hk
20 7 adantr φy+z+HB
21 1 13 18 19 20 climi2 φy+z+jZkjHkB<z
22 1 rexanuz2 jZkjGkA<yHkB<zjZkjGkA<yjZkjHkB<z
23 17 21 22 sylanbrc φy+z+jZkjGkA<yHkB<z
24 1 uztrn2 jZkjkZ
25 fvoveq1 u=GkuA=GkA
26 25 breq1d u=GkuA<yGkA<y
27 26 anbi1d u=GkuA<yvB<zGkA<yvB<z
28 oveq1 u=GkuFv=GkFv
29 28 fvoveq1d u=GkuFvAFB=GkFvAFB
30 29 breq1d u=GkuFvAFB<xGkFvAFB<x
31 27 30 imbi12d u=GkuA<yvB<zuFvAFB<xGkA<yvB<zGkFvAFB<x
32 fvoveq1 v=HkvB=HkB
33 32 breq1d v=HkvB<zHkB<z
34 33 anbi2d v=HkGkA<yvB<zGkA<yHkB<z
35 oveq2 v=HkGkFv=GkFHk
36 35 fvoveq1d v=HkGkFvAFB=GkFHkAFB
37 36 breq1d v=HkGkFvAFB<xGkFHkAFB<x
38 34 37 imbi12d v=HkGkA<yvB<zGkFvAFB<xGkA<yHkB<zGkFHkAFB<x
39 31 38 rspc2v GkCHkDuCvDuA<yvB<zuFvAFB<xGkA<yHkB<zGkFHkAFB<x
40 10 11 39 syl2anc φkZuCvDuA<yvB<zuFvAFB<xGkA<yHkB<zGkFHkAFB<x
41 40 imp φkZuCvDuA<yvB<zuFvAFB<xGkA<yHkB<zGkFHkAFB<x
42 41 an32s φuCvDuA<yvB<zuFvAFB<xkZGkA<yHkB<zGkFHkAFB<x
43 24 42 sylan2 φuCvDuA<yvB<zuFvAFB<xjZkjGkA<yHkB<zGkFHkAFB<x
44 43 anassrs φuCvDuA<yvB<zuFvAFB<xjZkjGkA<yHkB<zGkFHkAFB<x
45 44 ralimdva φuCvDuA<yvB<zuFvAFB<xjZkjGkA<yHkB<zkjGkFHkAFB<x
46 45 reximdva φuCvDuA<yvB<zuFvAFB<xjZkjGkA<yHkB<zjZkjGkFHkAFB<x
47 46 ex φuCvDuA<yvB<zuFvAFB<xjZkjGkA<yHkB<zjZkjGkFHkAFB<x
48 47 adantr φy+z+uCvDuA<yvB<zuFvAFB<xjZkjGkA<yHkB<zjZkjGkFHkAFB<x
49 23 48 mpid φy+z+uCvDuA<yvB<zuFvAFB<xjZkjGkFHkAFB<x
50 49 rexlimdvva φy+z+uCvDuA<yvB<zuFvAFB<xjZkjGkFHkAFB<x
51 50 adantr φx+y+z+uCvDuA<yvB<zuFvAFB<xjZkjGkFHkAFB<x
52 9 51 mpd φx+jZkjGkFHkAFB<x
53 52 ralrimiva φx+jZkjGkFHkAFB<x
54 5 3 4 caovcld φAFB
55 10 11 jca φkZGkCHkD
56 5 ralrimivva φuCvDuFv
57 56 adantr φkZuCvDuFv
58 28 eleq1d u=GkuFvGkFv
59 35 eleq1d v=HkGkFvGkFHk
60 58 59 rspc2v GkCHkDuCvDuFvGkFHk
61 55 57 60 sylc φkZGkFHk
62 1 2 8 12 54 61 clim2c φKAFBx+jZkjGkFHkAFB<x
63 53 62 mpbird φKAFB