Metamath Proof Explorer


Theorem clsneifv3

Description: Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses clsnei.o O=iV,jVk𝒫jiljmi|lkm
clsnei.p P=nVp𝒫n𝒫no𝒫nnpno
clsnei.d D=PB
clsnei.f F=𝒫BOB
clsnei.h H=FD
clsnei.r φKHN
clsneifv.x φXB
Assertion clsneifv3 φNX=s𝒫B|¬XKBs

Proof

Step Hyp Ref Expression
1 clsnei.o O=iV,jVk𝒫jiljmi|lkm
2 clsnei.p P=nVp𝒫n𝒫no𝒫nnpno
3 clsnei.d D=PB
4 clsnei.f F=𝒫BOB
5 clsnei.h H=FD
6 clsnei.r φKHN
7 clsneifv.x φXB
8 dfin5 𝒫BNX=s𝒫B|sNX
9 1 2 3 4 5 6 clsneinex φN𝒫𝒫BB
10 elmapi N𝒫𝒫BBN:B𝒫𝒫B
11 9 10 syl φN:B𝒫𝒫B
12 11 7 ffvelcdmd φNX𝒫𝒫B
13 12 elpwid φNX𝒫B
14 sseqin2 NX𝒫B𝒫BNX=NX
15 13 14 sylib φ𝒫BNX=NX
16 6 adantr φs𝒫BKHN
17 7 adantr φs𝒫BXB
18 simpr φs𝒫Bs𝒫B
19 1 2 3 4 5 16 17 18 clsneiel2 φs𝒫BXKBs¬sNX
20 19 con2bid φs𝒫BsNX¬XKBs
21 20 rabbidva φs𝒫B|sNX=s𝒫B|¬XKBs
22 8 15 21 3eqtr3a φNX=s𝒫B|¬XKBs