Metamath Proof Explorer


Theorem cmbr

Description: Binary relation expressing A commutes with B . Definition of commutes in Kalmbach p. 20. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cmbr ACBCA𝐶BA=ABAB

Proof

Step Hyp Ref Expression
1 eleq1 x=AxCAC
2 1 anbi1d x=AxCyCACyC
3 id x=Ax=A
4 ineq1 x=Axy=Ay
5 ineq1 x=Axy=Ay
6 4 5 oveq12d x=Axyxy=AyAy
7 3 6 eqeq12d x=Ax=xyxyA=AyAy
8 2 7 anbi12d x=AxCyCx=xyxyACyCA=AyAy
9 eleq1 y=ByCBC
10 9 anbi2d y=BACyCACBC
11 ineq2 y=BAy=AB
12 fveq2 y=By=B
13 12 ineq2d y=BAy=AB
14 11 13 oveq12d y=BAyAy=ABAB
15 14 eqeq2d y=BA=AyAyA=ABAB
16 10 15 anbi12d y=BACyCA=AyAyACBCA=ABAB
17 df-cm 𝐶=xy|xCyCx=xyxy
18 8 16 17 brabg ACBCA𝐶BACBCA=ABAB
19 18 bianabs ACBCA𝐶BA=ABAB