Metamath Proof Explorer


Theorem cmpfii

Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion cmpfii JCompXClsdJ¬fiXX

Proof

Step Hyp Ref Expression
1 fvex ClsdJV
2 1 elpw2 X𝒫ClsdJXClsdJ
3 2 biimpri XClsdJX𝒫ClsdJ
4 cmptop JCompJTop
5 cmpfi JTopJCompx𝒫ClsdJ¬fixx
6 4 5 syl JCompJCompx𝒫ClsdJ¬fixx
7 6 ibi JCompx𝒫ClsdJ¬fixx
8 fveq2 x=Xfix=fiX
9 8 eleq2d x=XfixfiX
10 9 notbid x=X¬fix¬fiX
11 inteq x=Xx=X
12 11 neeq1d x=XxX
13 10 12 imbi12d x=X¬fixx¬fiXX
14 13 rspcva X𝒫ClsdJx𝒫ClsdJ¬fixx¬fiXX
15 3 7 14 syl2anr JCompXClsdJ¬fiXX
16 15 3impia JCompXClsdJ¬fiXX