Metamath Proof Explorer


Theorem cn1lem

Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses cn1lem.1 F:
cn1lem.2 zAFzFAzA
Assertion cn1lem Ax+y+zzA<yFzFA<x

Proof

Step Hyp Ref Expression
1 cn1lem.1 F:
2 cn1lem.2 zAFzFAzA
3 simpr Ax+x+
4 simpr Ax+zz
5 simpll Ax+zA
6 4 5 2 syl2anc Ax+zFzFAzA
7 1 ffvelcdmi zFz
8 4 7 syl Ax+zFz
9 1 ffvelcdmi AFA
10 5 9 syl Ax+zFA
11 8 10 subcld Ax+zFzFA
12 11 abscld Ax+zFzFA
13 4 5 subcld Ax+zzA
14 13 abscld Ax+zzA
15 rpre x+x
16 15 ad2antlr Ax+zx
17 lelttr FzFAzAxFzFAzAzA<xFzFA<x
18 12 14 16 17 syl3anc Ax+zFzFAzAzA<xFzFA<x
19 6 18 mpand Ax+zzA<xFzFA<x
20 19 ralrimiva Ax+zzA<xFzFA<x
21 breq2 y=xzA<yzA<x
22 21 rspceaimv x+zzA<xFzFA<xy+zzA<yFzFA<x
23 3 20 22 syl2anc Ax+y+zzA<yFzFA<x