Metamath Proof Explorer


Theorem cnaddabloOLD

Description: Obsolete version of cnaddabl . Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion cnaddabloOLD +AbelOp

Proof

Step Hyp Ref Expression
1 cnex V
2 ax-addf +:×
3 addass xyzx+y+z=x+y+z
4 0cn 0
5 addlid x0+x=x
6 negcl xx
7 addcom xxx+x=-x+x
8 6 7 mpdan xx+x=-x+x
9 negid xx+x=0
10 8 9 eqtr3d x-x+x=0
11 1 2 3 4 5 6 10 isgrpoi +GrpOp
12 2 fdmi dom+=×
13 addcom xyx+y=y+x
14 11 12 13 isabloi +AbelOp