Metamath Proof Explorer


Theorem cncff

Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008) (Revised by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion cncff F:AcnBF:AB

Proof

Step Hyp Ref Expression
1 cncfrss F:AcnBA
2 cncfrss2 F:AcnBB
3 elcncf ABF:AcnBF:ABxAy+z+wAxw<zFxFw<y
4 1 2 3 syl2anc F:AcnBF:AcnBF:ABxAy+z+wAxw<zFxFw<y
5 4 ibi F:AcnBF:ABxAy+z+wAxw<zFxFw<y
6 5 simpld F:AcnBF:AB