Metamath Proof Explorer


Theorem cndis

Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cndis AVJTopOnX𝒫ACnJ=XA

Proof

Step Hyp Ref Expression
1 cnvimass f-1xdomf
2 fdm f:AXdomf=A
3 2 adantl AVJTopOnXf:AXdomf=A
4 1 3 sseqtrid AVJTopOnXf:AXf-1xA
5 elpw2g AVf-1x𝒫Af-1xA
6 5 ad2antrr AVJTopOnXf:AXf-1x𝒫Af-1xA
7 4 6 mpbird AVJTopOnXf:AXf-1x𝒫A
8 7 ralrimivw AVJTopOnXf:AXxJf-1x𝒫A
9 8 ex AVJTopOnXf:AXxJf-1x𝒫A
10 9 pm4.71d AVJTopOnXf:AXf:AXxJf-1x𝒫A
11 toponmax JTopOnXXJ
12 id AVAV
13 elmapg XJAVfXAf:AX
14 11 12 13 syl2anr AVJTopOnXfXAf:AX
15 distopon AV𝒫ATopOnA
16 iscn 𝒫ATopOnAJTopOnXf𝒫ACnJf:AXxJf-1x𝒫A
17 15 16 sylan AVJTopOnXf𝒫ACnJf:AXxJf-1x𝒫A
18 10 14 17 3bitr4rd AVJTopOnXf𝒫ACnJfXA
19 18 eqrdv AVJTopOnX𝒫ACnJ=XA