Metamath Proof Explorer


Theorem cnfldunif

Description: The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion cnfldunif metUnifabs=UnifSetfld

Proof

Step Hyp Ref Expression
1 fvex metUnifabsV
2 cnfldstr fldStruct113
3 unifid UnifSet=SlotUnifSetndx
4 ssun2 UnifSetndxmetUnifabsTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
5 ssun2 TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
6 df-cnfld fld=Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
7 5 6 sseqtrri TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsfld
8 4 7 sstri UnifSetndxmetUnifabsfld
9 2 3 8 strfv metUnifabsVmetUnifabs=UnifSetfld
10 1 9 ax-mp metUnifabs=UnifSetfld