Metamath Proof Explorer


Theorem cnlnadjeu

Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion cnlnadjeu TLinOpContOp∃!tLinOpContOpxyTxihy=xihty

Proof

Step Hyp Ref Expression
1 fveq1 T=ifTLinOpContOpT0hopTx=ifTLinOpContOpT0hopx
2 1 oveq1d T=ifTLinOpContOpT0hopTxihy=ifTLinOpContOpT0hopxihy
3 2 eqeq1d T=ifTLinOpContOpT0hopTxihy=xihtyifTLinOpContOpT0hopxihy=xihty
4 3 2ralbidv T=ifTLinOpContOpT0hopxyTxihy=xihtyxyifTLinOpContOpT0hopxihy=xihty
5 4 reubidv T=ifTLinOpContOpT0hop∃!tLinOpContOpxyTxihy=xihty∃!tLinOpContOpxyifTLinOpContOpT0hopxihy=xihty
6 inss1 LinOpContOpLinOp
7 0lnop 0hopLinOp
8 0cnop 0hopContOp
9 elin 0hopLinOpContOp0hopLinOp0hopContOp
10 7 8 9 mpbir2an 0hopLinOpContOp
11 10 elimel ifTLinOpContOpT0hopLinOpContOp
12 6 11 sselii ifTLinOpContOpT0hopLinOp
13 inss2 LinOpContOpContOp
14 13 11 sselii ifTLinOpContOpT0hopContOp
15 12 14 cnlnadjeui ∃!tLinOpContOpxyifTLinOpContOpT0hopxihy=xihty
16 5 15 dedth TLinOpContOp∃!tLinOpContOpxyTxihy=xihty