Metamath Proof Explorer


Theorem cnlnadjlem6

Description: Lemma for cnlnadji . F is linear. (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 T LinOp
cnlnadjlem.2 T ContOp
cnlnadjlem.3 G = g T g ih y
cnlnadjlem.4 B = ι w | v T v ih y = v ih w
cnlnadjlem.5 F = y B
Assertion cnlnadjlem6 F LinOp

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 T LinOp
2 cnlnadjlem.2 T ContOp
3 cnlnadjlem.3 G = g T g ih y
4 cnlnadjlem.4 B = ι w | v T v ih y = v ih w
5 cnlnadjlem.5 F = y B
6 1 2 3 4 cnlnadjlem3 y B
7 5 6 fmpti F :
8 1 lnopfi T :
9 8 ffvelrni t T t
10 9 adantl x f z t T t
11 hvmulcl x f x f
12 11 ad2antrr x f z t x f
13 simplr x f z t z
14 his7 T t x f z T t ih x f + z = T t ih x f + T t ih z
15 10 12 13 14 syl3anc x f z t T t ih x f + z = T t ih x f + T t ih z
16 hvaddcl x f z x f + z
17 11 16 sylan x f z x f + z
18 1 2 3 4 5 cnlnadjlem5 x f + z t T t ih x f + z = t ih F x f + z
19 17 18 sylan x f z t T t ih x f + z = t ih F x f + z
20 simpll x f t x
21 9 adantl x f t T t
22 simplr x f t f
23 his5 x T t f T t ih x f = x T t ih f
24 20 21 22 23 syl3anc x f t T t ih x f = x T t ih f
25 simpr x f t t
26 1 2 3 4 5 cnlnadjlem4 f F f
27 26 ad2antlr x f t F f
28 his5 x t F f t ih x F f = x t ih F f
29 20 25 27 28 syl3anc x f t t ih x F f = x t ih F f
30 1 2 3 4 5 cnlnadjlem5 f t T t ih f = t ih F f
31 30 adantll x f t T t ih f = t ih F f
32 31 oveq2d x f t x T t ih f = x t ih F f
33 29 32 eqtr4d x f t t ih x F f = x T t ih f
34 24 33 eqtr4d x f t T t ih x f = t ih x F f
35 34 adantlr x f z t T t ih x f = t ih x F f
36 1 2 3 4 5 cnlnadjlem5 z t T t ih z = t ih F z
37 36 adantll x f z t T t ih z = t ih F z
38 35 37 oveq12d x f z t T t ih x f + T t ih z = t ih x F f + t ih F z
39 simpr x f z t t
40 hvmulcl x F f x F f
41 26 40 sylan2 x f x F f
42 41 ad2antrr x f z t x F f
43 1 2 3 4 5 cnlnadjlem4 z F z
44 43 ad2antlr x f z t F z
45 his7 t x F f F z t ih x F f + F z = t ih x F f + t ih F z
46 39 42 44 45 syl3anc x f z t t ih x F f + F z = t ih x F f + t ih F z
47 38 46 eqtr4d x f z t T t ih x f + T t ih z = t ih x F f + F z
48 15 19 47 3eqtr3d x f z t t ih F x f + z = t ih x F f + F z
49 48 ralrimiva x f z t t ih F x f + z = t ih x F f + F z
50 1 2 3 4 5 cnlnadjlem4 x f + z F x f + z
51 17 50 syl x f z F x f + z
52 hvaddcl x F f F z x F f + F z
53 41 43 52 syl2an x f z x F f + F z
54 hial2eq2 F x f + z x F f + F z t t ih F x f + z = t ih x F f + F z F x f + z = x F f + F z
55 51 53 54 syl2anc x f z t t ih F x f + z = t ih x F f + F z F x f + z = x F f + F z
56 49 55 mpbid x f z F x f + z = x F f + F z
57 56 ralrimiva x f z F x f + z = x F f + F z
58 57 rgen2 x f z F x f + z = x F f + F z
59 ellnop F LinOp F : x f z F x f + z = x F f + F z
60 7 58 59 mpbir2an F LinOp