Metamath Proof Explorer


Theorem cnmetdval

Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypothesis cnmetdval.1 D=abs
Assertion cnmetdval ABADB=AB

Proof

Step Hyp Ref Expression
1 cnmetdval.1 D=abs
2 subf :×
3 opelxpi ABAB×
4 fvco3 :×AB×absAB=AB
5 2 3 4 sylancr ABabsAB=AB
6 df-ov ADB=DAB
7 1 fveq1i DAB=absAB
8 6 7 eqtri ADB=absAB
9 df-ov AB=AB
10 9 fveq2i AB=AB
11 5 8 10 3eqtr4g ABADB=AB