Metamath Proof Explorer


Theorem cntzsnid

Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypotheses cntzun.b B=BaseM
cntzun.z Z=CntzM
cntzsnid.1 0˙=0M
Assertion cntzsnid MMndZ0˙=B

Proof

Step Hyp Ref Expression
1 cntzun.b B=BaseM
2 cntzun.z Z=CntzM
3 cntzsnid.1 0˙=0M
4 1 3 mndidcl MMnd0˙B
5 eqid +M=+M
6 1 5 2 elcntzsn 0˙BxZ0˙xBx+M0˙=0˙+Mx
7 4 6 syl MMndxZ0˙xBx+M0˙=0˙+Mx
8 1 5 3 mndrid MMndxBx+M0˙=x
9 1 5 3 mndlid MMndxB0˙+Mx=x
10 8 9 eqtr4d MMndxBx+M0˙=0˙+Mx
11 10 ex MMndxBx+M0˙=0˙+Mx
12 11 pm4.71d MMndxBxBx+M0˙=0˙+Mx
13 7 12 bitr4d MMndxZ0˙xB
14 13 eqrdv MMndZ0˙=B