Metamath Proof Explorer


Theorem cntzun

Description: The centralizer of a union is the intersection of the centralizers. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypotheses cntzun.b B=BaseM
cntzun.z Z=CntzM
Assertion cntzun XBYBZXY=ZXZY

Proof

Step Hyp Ref Expression
1 cntzun.b B=BaseM
2 cntzun.z Z=CntzM
3 ralunb yXYx+My=y+MxyXx+My=y+MxyYx+My=y+Mx
4 3 a1i XBYBxByXYx+My=y+MxyXx+My=y+MxyYx+My=y+Mx
5 4 pm5.32da XBYBxByXYx+My=y+MxxByXx+My=y+MxyYx+My=y+Mx
6 anandi xByXx+My=y+MxyYx+My=y+MxxByXx+My=y+MxxByYx+My=y+Mx
7 5 6 bitrdi XBYBxByXYx+My=y+MxxByXx+My=y+MxxByYx+My=y+Mx
8 unss XBYBXYB
9 eqid +M=+M
10 1 9 2 elcntz XYBxZXYxByXYx+My=y+Mx
11 8 10 sylbi XBYBxZXYxByXYx+My=y+Mx
12 1 9 2 elcntz XBxZXxByXx+My=y+Mx
13 1 9 2 elcntz YBxZYxByYx+My=y+Mx
14 12 13 bi2anan9 XBYBxZXxZYxByXx+My=y+MxxByYx+My=y+Mx
15 7 11 14 3bitr4d XBYBxZXYxZXxZY
16 elin xZXZYxZXxZY
17 15 16 bitr4di XBYBxZXYxZXZY
18 17 eqrdv XBYBZXY=ZXZY