Step |
Hyp |
Ref |
Expression |
1 |
|
cntzun.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzun.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
3 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝑋 ∪ 𝑌 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
4 |
3
|
a1i |
⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝑋 ∪ 𝑌 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
5 |
4
|
pm5.32da |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ 𝑌 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) ) |
6 |
|
anandi |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
7 |
5 6
|
bitrdi |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ 𝑌 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) ) |
8 |
|
unss |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) ↔ ( 𝑋 ∪ 𝑌 ) ⊆ 𝐵 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
10 |
1 9 2
|
elcntz |
⊢ ( ( 𝑋 ∪ 𝑌 ) ⊆ 𝐵 → ( 𝑥 ∈ ( 𝑍 ‘ ( 𝑋 ∪ 𝑌 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ 𝑌 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
11 |
8 10
|
sylbi |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ ( 𝑋 ∪ 𝑌 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ 𝑌 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
12 |
1 9 2
|
elcntz |
⊢ ( 𝑋 ⊆ 𝐵 → ( 𝑥 ∈ ( 𝑍 ‘ 𝑋 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
13 |
1 9 2
|
elcntz |
⊢ ( 𝑌 ⊆ 𝐵 → ( 𝑥 ∈ ( 𝑍 ‘ 𝑌 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
14 |
12 13
|
bi2anan9 |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) → ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑌 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) ) |
15 |
7 11 14
|
3bitr4d |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ ( 𝑋 ∪ 𝑌 ) ) ↔ ( 𝑥 ∈ ( 𝑍 ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑌 ) ) ) ) |
16 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑋 ) ∩ ( 𝑍 ‘ 𝑌 ) ) ↔ ( 𝑥 ∈ ( 𝑍 ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑌 ) ) ) |
17 |
15 16
|
bitr4di |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ ( 𝑋 ∪ 𝑌 ) ) ↔ 𝑥 ∈ ( ( 𝑍 ‘ 𝑋 ) ∩ ( 𝑍 ‘ 𝑌 ) ) ) ) |
18 |
17
|
eqrdv |
⊢ ( ( 𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵 ) → ( 𝑍 ‘ ( 𝑋 ∪ 𝑌 ) ) = ( ( 𝑍 ‘ 𝑋 ) ∩ ( 𝑍 ‘ 𝑌 ) ) ) |