Metamath Proof Explorer


Theorem cntzun

Description: The centralizer of a union is the intersection of the centralizers. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypotheses cntzun.b 𝐵 = ( Base ‘ 𝑀 )
cntzun.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion cntzun ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑍 ‘ ( 𝑋𝑌 ) ) = ( ( 𝑍𝑋 ) ∩ ( 𝑍𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 cntzun.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzun.z 𝑍 = ( Cntz ‘ 𝑀 )
3 ralunb ( ∀ 𝑦 ∈ ( 𝑋𝑌 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ↔ ( ∀ 𝑦𝑋 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ∧ ∀ 𝑦𝑌 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) )
4 3 a1i ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑥𝐵 ) → ( ∀ 𝑦 ∈ ( 𝑋𝑌 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ↔ ( ∀ 𝑦𝑋 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ∧ ∀ 𝑦𝑌 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) )
5 4 pm5.32da ( ( 𝑋𝐵𝑌𝐵 ) → ( ( 𝑥𝐵 ∧ ∀ 𝑦 ∈ ( 𝑋𝑌 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ↔ ( 𝑥𝐵 ∧ ( ∀ 𝑦𝑋 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ∧ ∀ 𝑦𝑌 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) ) )
6 anandi ( ( 𝑥𝐵 ∧ ( ∀ 𝑦𝑋 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ∧ ∀ 𝑦𝑌 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) ↔ ( ( 𝑥𝐵 ∧ ∀ 𝑦𝑋 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝑌 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) )
7 5 6 bitrdi ( ( 𝑋𝐵𝑌𝐵 ) → ( ( 𝑥𝐵 ∧ ∀ 𝑦 ∈ ( 𝑋𝑌 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ↔ ( ( 𝑥𝐵 ∧ ∀ 𝑦𝑋 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝑌 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) ) )
8 unss ( ( 𝑋𝐵𝑌𝐵 ) ↔ ( 𝑋𝑌 ) ⊆ 𝐵 )
9 eqid ( +g𝑀 ) = ( +g𝑀 )
10 1 9 2 elcntz ( ( 𝑋𝑌 ) ⊆ 𝐵 → ( 𝑥 ∈ ( 𝑍 ‘ ( 𝑋𝑌 ) ) ↔ ( 𝑥𝐵 ∧ ∀ 𝑦 ∈ ( 𝑋𝑌 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) )
11 8 10 sylbi ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ ( 𝑋𝑌 ) ) ↔ ( 𝑥𝐵 ∧ ∀ 𝑦 ∈ ( 𝑋𝑌 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) )
12 1 9 2 elcntz ( 𝑋𝐵 → ( 𝑥 ∈ ( 𝑍𝑋 ) ↔ ( 𝑥𝐵 ∧ ∀ 𝑦𝑋 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) )
13 1 9 2 elcntz ( 𝑌𝐵 → ( 𝑥 ∈ ( 𝑍𝑌 ) ↔ ( 𝑥𝐵 ∧ ∀ 𝑦𝑌 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) )
14 12 13 bi2anan9 ( ( 𝑋𝐵𝑌𝐵 ) → ( ( 𝑥 ∈ ( 𝑍𝑋 ) ∧ 𝑥 ∈ ( 𝑍𝑌 ) ) ↔ ( ( 𝑥𝐵 ∧ ∀ 𝑦𝑋 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝑌 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) ) ) )
15 7 11 14 3bitr4d ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ ( 𝑋𝑌 ) ) ↔ ( 𝑥 ∈ ( 𝑍𝑋 ) ∧ 𝑥 ∈ ( 𝑍𝑌 ) ) ) )
16 elin ( 𝑥 ∈ ( ( 𝑍𝑋 ) ∩ ( 𝑍𝑌 ) ) ↔ ( 𝑥 ∈ ( 𝑍𝑋 ) ∧ 𝑥 ∈ ( 𝑍𝑌 ) ) )
17 15 16 bitr4di ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ ( 𝑋𝑌 ) ) ↔ 𝑥 ∈ ( ( 𝑍𝑋 ) ∩ ( 𝑍𝑌 ) ) ) )
18 17 eqrdv ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑍 ‘ ( 𝑋𝑌 ) ) = ( ( 𝑍𝑋 ) ∩ ( 𝑍𝑌 ) ) )