Metamath Proof Explorer


Theorem cnvresid

Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007)

Ref Expression
Assertion cnvresid IA-1=IA

Proof

Step Hyp Ref Expression
1 cnvi I-1=I
2 1 eqcomi I=I-1
3 funi FunI
4 funeq I=I-1FunIFunI-1
5 3 4 mpbii I=I-1FunI-1
6 funcnvres FunI-1IA-1=I-1IA
7 imai IA=A
8 1 7 reseq12i I-1IA=IA
9 6 8 eqtrdi FunI-1IA-1=IA
10 2 5 9 mp2b IA-1=IA