Metamath Proof Explorer


Theorem coe1ae0

Description: The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019)

Ref Expression
Hypotheses coe1ae0.a A=coe1F
coe1ae0.b B=BaseP
coe1ae0.p P=Poly1R
coe1ae0.z 0˙=0R
Assertion coe1ae0 FBs0n0s<nAn=0˙

Proof

Step Hyp Ref Expression
1 coe1ae0.a A=coe1F
2 coe1ae0.b B=BaseP
3 coe1ae0.p P=Poly1R
4 coe1ae0.z 0˙=0R
5 eqid BaseR=BaseR
6 1 2 3 4 5 coe1fsupp FBAaBaseR0|finSupp0˙a
7 breq1 a=AfinSupp0˙afinSupp0˙A
8 7 elrab AaBaseR0|finSupp0˙aABaseR0finSupp0˙A
9 4 fvexi 0˙V
10 9 a1i FB0˙V
11 fsuppmapnn0ub ABaseR00˙VfinSupp0˙As0n0s<nAn=0˙
12 10 11 sylan2 ABaseR0FBfinSupp0˙As0n0s<nAn=0˙
13 12 impancom ABaseR0finSupp0˙AFBs0n0s<nAn=0˙
14 8 13 sylbi AaBaseR0|finSupp0˙aFBs0n0s<nAn=0˙
15 6 14 mpcom FBs0n0s<nAn=0˙