Metamath Proof Explorer


Theorem cofcut2

Description: If A and C are mutually cofinal and B and D are mutually coinitial, then the cut of A and B is equal to the cut of C and D . Theorem 2.7 of Gonshor p. 10. (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Assertion cofcut2 A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r A | s B = C | s D

Proof

Step Hyp Ref Expression
1 simp11 A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r A s B
2 simp2 A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r x A y C x s y z B w D w s z
3 simp12 A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r C 𝒫 No
4 simp3l A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r t C u A t s u
5 scutcut A s B A | s B No A s A | s B A | s B s B
6 1 5 syl A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r A | s B No A s A | s B A | s B s B
7 6 simp2d A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r A s A | s B
8 cofsslt C 𝒫 No t C u A t s u A s A | s B C s A | s B
9 3 4 7 8 syl3anc A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r C s A | s B
10 simp13 A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r D 𝒫 No
11 simp3r A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r r D s B s s r
12 6 simp3d A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r A | s B s B
13 coinitsslt D 𝒫 No r D s B s s r A | s B s B A | s B s D
14 10 11 12 13 syl3anc A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r A | s B s D
15 cofcut1 A s B x A y C x s y z B w D w s z C s A | s B A | s B s D A | s B = C | s D
16 1 2 9 14 15 syl112anc A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r A | s B = C | s D