Metamath Proof Explorer


Theorem cofu2

Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses cofuval.b B=BaseC
cofuval.f φFCFuncD
cofuval.g φGDFuncE
cofu2nd.x φXB
cofu2nd.y φYB
cofu2.h H=HomC
cofu2.y φRXHY
Assertion cofu2 φX2ndGfuncFYR=1stFX2ndG1stFYX2ndFYR

Proof

Step Hyp Ref Expression
1 cofuval.b B=BaseC
2 cofuval.f φFCFuncD
3 cofuval.g φGDFuncE
4 cofu2nd.x φXB
5 cofu2nd.y φYB
6 cofu2.h H=HomC
7 cofu2.y φRXHY
8 1 2 3 4 5 cofu2nd φX2ndGfuncFY=1stFX2ndG1stFYX2ndFY
9 8 fveq1d φX2ndGfuncFYR=1stFX2ndG1stFYX2ndFYR
10 eqid HomD=HomD
11 relfunc RelCFuncD
12 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
13 11 2 12 sylancr φ1stFCFuncD2ndF
14 1 6 10 13 4 5 funcf2 φX2ndFY:XHY1stFXHomD1stFY
15 fvco3 X2ndFY:XHY1stFXHomD1stFYRXHY1stFX2ndG1stFYX2ndFYR=1stFX2ndG1stFYX2ndFYR
16 14 7 15 syl2anc φ1stFX2ndG1stFYX2ndFYR=1stFX2ndG1stFYX2ndFYR
17 9 16 eqtrd φX2ndGfuncFYR=1stFX2ndG1stFYX2ndFYR