Metamath Proof Explorer


Theorem cofu2a

Description: Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses cofu1a.b B = Base C
cofu1a.f φ F C Func D G
cofu1a.k φ K D Func E L
cofu1a.m φ K L func F G = M N
cofu1a.x φ X B
cofu2a.y φ Y B
cofu2a.h H = Hom C
cofu2a.r φ R X H Y
Assertion cofu2a φ F X L F Y X G Y R = X N Y R

Proof

Step Hyp Ref Expression
1 cofu1a.b B = Base C
2 cofu1a.f φ F C Func D G
3 cofu1a.k φ K D Func E L
4 cofu1a.m φ K L func F G = M N
5 cofu1a.x φ X B
6 cofu2a.y φ Y B
7 cofu2a.h H = Hom C
8 cofu2a.r φ R X H Y
9 df-br F C Func D G F G C Func D
10 2 9 sylib φ F G C Func D
11 df-br K D Func E L K L D Func E
12 3 11 sylib φ K L D Func E
13 1 10 12 5 6 7 8 cofu2 φ X 2 nd K L func F G Y R = 1 st F G X 2 nd K L 1 st F G Y X 2 nd F G Y R
14 4 fveq2d φ 2 nd K L func F G = 2 nd M N
15 10 12 cofucl φ K L func F G C Func E
16 4 15 eqeltrrd φ M N C Func E
17 df-br M C Func E N M N C Func E
18 16 17 sylibr φ M C Func E N
19 18 func2nd φ 2 nd M N = N
20 14 19 eqtrd φ 2 nd K L func F G = N
21 20 oveqd φ X 2 nd K L func F G Y = X N Y
22 21 fveq1d φ X 2 nd K L func F G Y R = X N Y R
23 3 func2nd φ 2 nd K L = L
24 2 func1st φ 1 st F G = F
25 24 fveq1d φ 1 st F G X = F X
26 24 fveq1d φ 1 st F G Y = F Y
27 23 25 26 oveq123d φ 1 st F G X 2 nd K L 1 st F G Y = F X L F Y
28 2 func2nd φ 2 nd F G = G
29 28 oveqd φ X 2 nd F G Y = X G Y
30 29 fveq1d φ X 2 nd F G Y R = X G Y R
31 27 30 fveq12d φ 1 st F G X 2 nd K L 1 st F G Y X 2 nd F G Y R = F X L F Y X G Y R
32 13 22 31 3eqtr3rd φ F X L F Y X G Y R = X N Y R