Metamath Proof Explorer


Theorem coinflipprob

Description: The P we defined for coin-flip is a probability law. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Hypotheses coinflip.h HV
coinflip.t TV
coinflip.th HT
coinflip.2 P=.𝒫HTfc÷2
coinflip.3 X=H1T0
Assertion coinflipprob PProb

Proof

Step Hyp Ref Expression
1 coinflip.h HV
2 coinflip.t TV
3 coinflip.th HT
4 coinflip.2 P=.𝒫HTfc÷2
5 coinflip.3 X=H1T0
6 1 2 3 4 5 coinfliplem P=.𝒫HTfc÷𝑒2
7 unipw 𝒫HT=HT
8 prex HTV
9 8 pwid HT𝒫HT
10 7 9 eqeltri 𝒫HT𝒫HT
11 fvres 𝒫HT𝒫HT.𝒫HT𝒫HT=𝒫HT
12 10 11 ax-mp .𝒫HT𝒫HT=𝒫HT
13 7 fveq2i 𝒫HT=HT
14 hashprg HVTVHTHT=2
15 1 2 14 mp2an HTHT=2
16 3 15 mpbi HT=2
17 12 13 16 3eqtri .𝒫HT𝒫HT=2
18 17 oveq2i .𝒫HTfc÷𝑒.𝒫HT𝒫HT=.𝒫HTfc÷𝑒2
19 6 18 eqtr4i P=.𝒫HTfc÷𝑒.𝒫HT𝒫HT
20 pwcntmeas HTV.𝒫HTmeasures𝒫HT
21 8 20 ax-mp .𝒫HTmeasures𝒫HT
22 2rp 2+
23 17 22 eqeltri .𝒫HT𝒫HT+
24 probfinmeasb .𝒫HTmeasures𝒫HT.𝒫HT𝒫HT+.𝒫HTfc÷𝑒.𝒫HT𝒫HTProb
25 21 23 24 mp2an .𝒫HTfc÷𝑒.𝒫HT𝒫HTProb
26 19 25 eqeltri PProb