Metamath Proof Explorer


Theorem coinflipprob

Description: The P we defined for coin-flip is a probability law. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Hypotheses coinflip.h H V
coinflip.t T V
coinflip.th H T
coinflip.2 P = . 𝒫 H T fc ÷ 2
coinflip.3 X = H 1 T 0
Assertion coinflipprob P Prob

Proof

Step Hyp Ref Expression
1 coinflip.h H V
2 coinflip.t T V
3 coinflip.th H T
4 coinflip.2 P = . 𝒫 H T fc ÷ 2
5 coinflip.3 X = H 1 T 0
6 1 2 3 4 5 coinfliplem P = . 𝒫 H T fc ÷ 𝑒 2
7 unipw 𝒫 H T = H T
8 prex H T V
9 8 pwid H T 𝒫 H T
10 7 9 eqeltri 𝒫 H T 𝒫 H T
11 fvres 𝒫 H T 𝒫 H T . 𝒫 H T 𝒫 H T = 𝒫 H T
12 10 11 ax-mp . 𝒫 H T 𝒫 H T = 𝒫 H T
13 7 fveq2i 𝒫 H T = H T
14 hashprg H V T V H T H T = 2
15 1 2 14 mp2an H T H T = 2
16 3 15 mpbi H T = 2
17 12 13 16 3eqtri . 𝒫 H T 𝒫 H T = 2
18 17 oveq2i . 𝒫 H T fc ÷ 𝑒 . 𝒫 H T 𝒫 H T = . 𝒫 H T fc ÷ 𝑒 2
19 6 18 eqtr4i P = . 𝒫 H T fc ÷ 𝑒 . 𝒫 H T 𝒫 H T
20 pwcntmeas H T V . 𝒫 H T measures 𝒫 H T
21 8 20 ax-mp . 𝒫 H T measures 𝒫 H T
22 2rp 2 +
23 17 22 eqeltri . 𝒫 H T 𝒫 H T +
24 probfinmeasb . 𝒫 H T measures 𝒫 H T . 𝒫 H T 𝒫 H T + . 𝒫 H T fc ÷ 𝑒 . 𝒫 H T 𝒫 H T Prob
25 21 23 24 mp2an . 𝒫 H T fc ÷ 𝑒 . 𝒫 H T 𝒫 H T Prob
26 19 25 eqeltri P Prob