Metamath Proof Explorer


Theorem congsym

Description: Congruence mod A is a symmetric/commutative relation. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion congsym ABCABCACB

Proof

Step Hyp Ref Expression
1 simprr ABCABCABC
2 zcn CC
3 2 ad2antrl ABCABCC
4 zcn BB
5 4 ad2antlr ABCABCB
6 3 5 negsubdi2d ABCABCCB=BC
7 1 6 breqtrrd ABCABCACB
8 simpll ABCABCA
9 simprl ABCABCC
10 simplr ABCABCB
11 9 10 zsubcld ABCABCCB
12 dvdsnegb ACBACBACB
13 8 11 12 syl2anc ABCABCACBACB
14 7 13 mpbird ABCABCACB