Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | conjghm.x | |
|
conjghm.p | |
||
conjghm.m | |
||
conjsubg.f | |
||
Assertion | conjsubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conjghm.x | |
|
2 | conjghm.p | |
|
3 | conjghm.m | |
|
4 | conjsubg.f | |
|
5 | 1 | subgss | |
6 | 5 | adantr | |
7 | df-ima | |
|
8 | resmpt | |
|
9 | 8 4 | eqtr4di | |
10 | 9 | rneqd | |
11 | 7 10 | eqtrid | |
12 | 6 11 | syl | |
13 | subgrcl | |
|
14 | eqid | |
|
15 | 1 2 3 14 | conjghm | |
16 | 13 15 | sylan | |
17 | 16 | simpld | |
18 | simpl | |
|
19 | ghmima | |
|
20 | 17 18 19 | syl2anc | |
21 | 12 20 | eqeltrrd | |