Metamath Proof Explorer


Theorem conjsubg

Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses conjghm.x X=BaseG
conjghm.p +˙=+G
conjghm.m -˙=-G
conjsubg.f F=xSA+˙x-˙A
Assertion conjsubg SSubGrpGAXranFSubGrpG

Proof

Step Hyp Ref Expression
1 conjghm.x X=BaseG
2 conjghm.p +˙=+G
3 conjghm.m -˙=-G
4 conjsubg.f F=xSA+˙x-˙A
5 1 subgss SSubGrpGSX
6 5 adantr SSubGrpGAXSX
7 df-ima xXA+˙x-˙AS=ranxXA+˙x-˙AS
8 resmpt SXxXA+˙x-˙AS=xSA+˙x-˙A
9 8 4 eqtr4di SXxXA+˙x-˙AS=F
10 9 rneqd SXranxXA+˙x-˙AS=ranF
11 7 10 eqtrid SXxXA+˙x-˙AS=ranF
12 6 11 syl SSubGrpGAXxXA+˙x-˙AS=ranF
13 subgrcl SSubGrpGGGrp
14 eqid xXA+˙x-˙A=xXA+˙x-˙A
15 1 2 3 14 conjghm GGrpAXxXA+˙x-˙AGGrpHomGxXA+˙x-˙A:X1-1 ontoX
16 13 15 sylan SSubGrpGAXxXA+˙x-˙AGGrpHomGxXA+˙x-˙A:X1-1 ontoX
17 16 simpld SSubGrpGAXxXA+˙x-˙AGGrpHomG
18 simpl SSubGrpGAXSSubGrpG
19 ghmima xXA+˙x-˙AGGrpHomGSSubGrpGxXA+˙x-˙ASSubGrpG
20 17 18 19 syl2anc SSubGrpGAXxXA+˙x-˙ASSubGrpG
21 12 20 eqeltrrd SSubGrpGAXranFSubGrpG