Metamath Proof Explorer


Theorem conncompclo

Description: The connected component containing A is a subset of any clopen set containing A . (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypothesis conncomp.2 S=x𝒫X|AxJ𝑡xConn
Assertion conncompclo JTopOnXTJClsdJATST

Proof

Step Hyp Ref Expression
1 conncomp.2 S=x𝒫X|AxJ𝑡xConn
2 eqid J=J
3 simp1 JTopOnXTJClsdJATJTopOnX
4 simp2 JTopOnXTJClsdJATTJClsdJ
5 4 elin1d JTopOnXTJClsdJATTJ
6 toponss JTopOnXTJTX
7 3 5 6 syl2anc JTopOnXTJClsdJATTX
8 simp3 JTopOnXTJClsdJATAT
9 7 8 sseldd JTopOnXTJClsdJATAX
10 1 conncompcld JTopOnXAXSClsdJ
11 3 9 10 syl2anc JTopOnXTJClsdJATSClsdJ
12 2 cldss SClsdJSJ
13 11 12 syl JTopOnXTJClsdJATSJ
14 1 conncompconn JTopOnXAXJ𝑡SConn
15 3 9 14 syl2anc JTopOnXTJClsdJATJ𝑡SConn
16 1 conncompid JTopOnXAXAS
17 3 9 16 syl2anc JTopOnXTJClsdJATAS
18 inelcm ATASTS
19 8 17 18 syl2anc JTopOnXTJClsdJATTS
20 4 elin2d JTopOnXTJClsdJATTClsdJ
21 2 13 15 5 19 20 connsubclo JTopOnXTJClsdJATST