Metamath Proof Explorer


Theorem conncompclo

Description: The connected component containing A is a subset of any clopen set containing A . (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypothesis conncomp.2 S = x 𝒫 X | A x J 𝑡 x Conn
Assertion conncompclo J TopOn X T J Clsd J A T S T

Proof

Step Hyp Ref Expression
1 conncomp.2 S = x 𝒫 X | A x J 𝑡 x Conn
2 eqid J = J
3 simp1 J TopOn X T J Clsd J A T J TopOn X
4 simp2 J TopOn X T J Clsd J A T T J Clsd J
5 4 elin1d J TopOn X T J Clsd J A T T J
6 toponss J TopOn X T J T X
7 3 5 6 syl2anc J TopOn X T J Clsd J A T T X
8 simp3 J TopOn X T J Clsd J A T A T
9 7 8 sseldd J TopOn X T J Clsd J A T A X
10 1 conncompcld J TopOn X A X S Clsd J
11 3 9 10 syl2anc J TopOn X T J Clsd J A T S Clsd J
12 2 cldss S Clsd J S J
13 11 12 syl J TopOn X T J Clsd J A T S J
14 1 conncompconn J TopOn X A X J 𝑡 S Conn
15 3 9 14 syl2anc J TopOn X T J Clsd J A T J 𝑡 S Conn
16 1 conncompid J TopOn X A X A S
17 3 9 16 syl2anc J TopOn X T J Clsd J A T A S
18 inelcm A T A S T S
19 8 17 18 syl2anc J TopOn X T J Clsd J A T T S
20 4 elin2d J TopOn X T J Clsd J A T T Clsd J
21 2 13 15 5 19 20 connsubclo J TopOn X T J Clsd J A T S T