Description: The connected component containing A is a subset of any clopen set containing A . (Contributed by Mario Carneiro, 20-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | conncomp.2 | |
|
Assertion | conncompclo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conncomp.2 | |
|
2 | eqid | |
|
3 | simp1 | |
|
4 | simp2 | |
|
5 | 4 | elin1d | |
6 | toponss | |
|
7 | 3 5 6 | syl2anc | |
8 | simp3 | |
|
9 | 7 8 | sseldd | |
10 | 1 | conncompcld | |
11 | 3 9 10 | syl2anc | |
12 | 2 | cldss | |
13 | 11 12 | syl | |
14 | 1 | conncompconn | |
15 | 3 9 14 | syl2anc | |
16 | 1 | conncompid | |
17 | 3 9 16 | syl2anc | |
18 | inelcm | |
|
19 | 8 17 18 | syl2anc | |
20 | 4 | elin2d | |
21 | 2 13 15 5 19 20 | connsubclo | |