Metamath Proof Explorer


Theorem copissgrp

Description: A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses copissgrp.b B = Base M
copissgrp.p + M = x B , y B C
copissgrp.n φ B
copissgrp.c φ C B
Assertion copissgrp Could not format assertion : No typesetting found for |- ( ph -> M e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 copissgrp.b B = Base M
2 copissgrp.p + M = x B , y B C
3 copissgrp.n φ B
4 copissgrp.c φ C B
5 4 adantr φ x B y B C B
6 1 2 3 5 opmpoismgm φ M Mgm
7 eqidd C B a B b B c B x B , y B C = x B , y B C
8 eqidd C B a B b B c B x = C y = c C = C
9 simpl C B a B b B c B C B
10 simpr3 C B a B b B c B c B
11 7 8 9 10 9 ovmpod C B a B b B c B C x B , y B C c = C
12 eqidd C B a B b B c B x = a y = C C = C
13 simpr1 C B a B b B c B a B
14 7 12 13 9 9 ovmpod C B a B b B c B a x B , y B C C = C
15 11 14 eqtr4d C B a B b B c B C x B , y B C c = a x B , y B C C
16 4 15 sylan φ a B b B c B C x B , y B C c = a x B , y B C C
17 eqidd φ a B b B c B x B , y B C = x B , y B C
18 eqidd φ a B b B c B x = a y = b C = C
19 simpr1 φ a B b B c B a B
20 simpr2 φ a B b B c B b B
21 4 adantr φ a B b B c B C B
22 17 18 19 20 21 ovmpod φ a B b B c B a x B , y B C b = C
23 22 oveq1d φ a B b B c B a x B , y B C b x B , y B C c = C x B , y B C c
24 eqidd φ a B b B c B x = b y = c C = C
25 simpr3 φ a B b B c B c B
26 17 24 20 25 21 ovmpod φ a B b B c B b x B , y B C c = C
27 26 oveq2d φ a B b B c B a x B , y B C b x B , y B C c = a x B , y B C C
28 16 23 27 3eqtr4d φ a B b B c B a x B , y B C b x B , y B C c = a x B , y B C b x B , y B C c
29 28 ralrimivvva φ a B b B c B a x B , y B C b x B , y B C c = a x B , y B C b x B , y B C c
30 2 eqcomi x B , y B C = + M
31 1 30 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. B A. b e. B A. c e. B ( ( a ( x e. B , y e. B |-> C ) b ) ( x e. B , y e. B |-> C ) c ) = ( a ( x e. B , y e. B |-> C ) ( b ( x e. B , y e. B |-> C ) c ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. B A. b e. B A. c e. B ( ( a ( x e. B , y e. B |-> C ) b ) ( x e. B , y e. B |-> C ) c ) = ( a ( x e. B , y e. B |-> C ) ( b ( x e. B , y e. B |-> C ) c ) ) ) ) with typecode |-
32 6 29 31 sylanbrc Could not format ( ph -> M e. Smgrp ) : No typesetting found for |- ( ph -> M e. Smgrp ) with typecode |-