Metamath Proof Explorer


Theorem copissgrp

Description: A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses copissgrp.b B=BaseM
copissgrp.p +M=xB,yBC
copissgrp.n φB
copissgrp.c φCB
Assertion copissgrp Could not format assertion : No typesetting found for |- ( ph -> M e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 copissgrp.b B=BaseM
2 copissgrp.p +M=xB,yBC
3 copissgrp.n φB
4 copissgrp.c φCB
5 4 adantr φxByBCB
6 1 2 3 5 opmpoismgm φMMgm
7 eqidd CBaBbBcBxB,yBC=xB,yBC
8 eqidd CBaBbBcBx=Cy=cC=C
9 simpl CBaBbBcBCB
10 simpr3 CBaBbBcBcB
11 7 8 9 10 9 ovmpod CBaBbBcBCxB,yBCc=C
12 eqidd CBaBbBcBx=ay=CC=C
13 simpr1 CBaBbBcBaB
14 7 12 13 9 9 ovmpod CBaBbBcBaxB,yBCC=C
15 11 14 eqtr4d CBaBbBcBCxB,yBCc=axB,yBCC
16 4 15 sylan φaBbBcBCxB,yBCc=axB,yBCC
17 eqidd φaBbBcBxB,yBC=xB,yBC
18 eqidd φaBbBcBx=ay=bC=C
19 simpr1 φaBbBcBaB
20 simpr2 φaBbBcBbB
21 4 adantr φaBbBcBCB
22 17 18 19 20 21 ovmpod φaBbBcBaxB,yBCb=C
23 22 oveq1d φaBbBcBaxB,yBCbxB,yBCc=CxB,yBCc
24 eqidd φaBbBcBx=by=cC=C
25 simpr3 φaBbBcBcB
26 17 24 20 25 21 ovmpod φaBbBcBbxB,yBCc=C
27 26 oveq2d φaBbBcBaxB,yBCbxB,yBCc=axB,yBCC
28 16 23 27 3eqtr4d φaBbBcBaxB,yBCbxB,yBCc=axB,yBCbxB,yBCc
29 28 ralrimivvva φaBbBcBaxB,yBCbxB,yBCc=axB,yBCbxB,yBCc
30 2 eqcomi xB,yBC=+M
31 1 30 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. B A. b e. B A. c e. B ( ( a ( x e. B , y e. B |-> C ) b ) ( x e. B , y e. B |-> C ) c ) = ( a ( x e. B , y e. B |-> C ) ( b ( x e. B , y e. B |-> C ) c ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. B A. b e. B A. c e. B ( ( a ( x e. B , y e. B |-> C ) b ) ( x e. B , y e. B |-> C ) c ) = ( a ( x e. B , y e. B |-> C ) ( b ( x e. B , y e. B |-> C ) c ) ) ) ) with typecode |-
32 6 29 31 sylanbrc Could not format ( ph -> M e. Smgrp ) : No typesetting found for |- ( ph -> M e. Smgrp ) with typecode |-