Description: A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | copissgrp.b | |
|
copissgrp.p | |
||
copissgrp.n | |
||
copissgrp.c | |
||
Assertion | copissgrp | Could not format assertion : No typesetting found for |- ( ph -> M e. Smgrp ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | copissgrp.b | |
|
2 | copissgrp.p | |
|
3 | copissgrp.n | |
|
4 | copissgrp.c | |
|
5 | 4 | adantr | |
6 | 1 2 3 5 | opmpoismgm | |
7 | eqidd | |
|
8 | eqidd | |
|
9 | simpl | |
|
10 | simpr3 | |
|
11 | 7 8 9 10 9 | ovmpod | |
12 | eqidd | |
|
13 | simpr1 | |
|
14 | 7 12 13 9 9 | ovmpod | |
15 | 11 14 | eqtr4d | |
16 | 4 15 | sylan | |
17 | eqidd | |
|
18 | eqidd | |
|
19 | simpr1 | |
|
20 | simpr2 | |
|
21 | 4 | adantr | |
22 | 17 18 19 20 21 | ovmpod | |
23 | 22 | oveq1d | |
24 | eqidd | |
|
25 | simpr3 | |
|
26 | 17 24 20 25 21 | ovmpod | |
27 | 26 | oveq2d | |
28 | 16 23 27 | 3eqtr4d | |
29 | 28 | ralrimivvva | |
30 | 2 | eqcomi | |
31 | 1 30 | issgrp | Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. B A. b e. B A. c e. B ( ( a ( x e. B , y e. B |-> C ) b ) ( x e. B , y e. B |-> C ) c ) = ( a ( x e. B , y e. B |-> C ) ( b ( x e. B , y e. B |-> C ) c ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. B A. b e. B A. c e. B ( ( a ( x e. B , y e. B |-> C ) b ) ( x e. B , y e. B |-> C ) c ) = ( a ( x e. B , y e. B |-> C ) ( b ( x e. B , y e. B |-> C ) c ) ) ) ) with typecode |- |
32 | 6 29 31 | sylanbrc | Could not format ( ph -> M e. Smgrp ) : No typesetting found for |- ( ph -> M e. Smgrp ) with typecode |- |